The Chinese University of Hong Kong - CUHK - July 6, 2011

DIRTY PAPER CODING AND DISTRIBUTED SOURCE CODING

TWO VIEWS OF COMBINED SOURCE AND CHANNEL CODING

Max H. M. Costa
FEEC - Unicamp

Summary

- INTRODUCTION
- DIRTY PAPER CODING
- CODING FOR MEMORIES WITH DEFECTS
- PARTITIONED LINEAR BLOCK CODES
- COSET CODES
- DISTRIBUTED SOURCE CODING
- BINNING VS QUANTIZATION
- COSET CODES
- DISCUSSION

Information Theory
 Some seminal papers by Shannon

- Channel Coding, 1948
- Source Coding, 1948, 1958
- Cryptography, 1949

Channel coding - example

Capacity: 1 bit/transmission Best code: Use only inputs $\{1,3\}$

Exercise moderation!!

Channel coding

Typically need larger codes, $n \gg 1$

Source coding:
 Get good representation of source with few bits

Introduction

CHANNEL CODING

$$
\begin{aligned}
& \mathrm{C}=\max _{\mathrm{p}(\mathrm{x})} \mathrm{I}(\mathrm{X} ; \mathrm{Y}) \\
& \hline
\end{aligned}
$$

SOURCE CODING

$$
\mathrm{R}(\mathrm{D})=\min _{\mathrm{p}(\hat{\mathrm{x}} \mid \mathrm{x}): \mathrm{Ed}(\mathrm{X}(\mathrm{x}, \hat{\mathrm{x}})<\mathrm{D}}
$$

Source and channel coding in communication system

Joint source and channel coding

Can be simple if source and channel are matched
Gaussian noise

Rate distortion theory

Example: Gaussian source with memory

$D(R)=2^{-2 R} \sigma_{x}^{2}$
or
$R(D)=\frac{1}{2} \log _{2}\left(\frac{\sigma_{x}^{2}}{D}\right)$
$\therefore \quad \operatorname{Max} S N R(d B)=10 \log _{10}\left(\frac{\sigma_{x}^{2}}{D(R)}\right)=20 R \log _{10} 2 \cong 6 R$

RMS distortion

Dirty paper coding

CODING FOR MEMORIES WITH DEFECTS

"

Binning: Randomly distribute all 2^{n} sequences into $2^{\text {nR "bins" }}$

Bin ${ }_{2}^{n R}$

\# of sequences in each bin $=\frac{2^{n}}{2^{n R}}=2^{n(1-R)}$
E (\# of matching sequences in a bin $)=2^{n(1-R)} \cdot 2^{-n \alpha}$

$$
=2^{n(1-\alpha-R)}
$$

Note:

If $\mathbf{R}<1-\alpha>$ guaranteed to have a match

Thus Capacity = 1- α bits per memory cell

(same as if receiver knew defect positions)

Model

General solution (Gelfand and Pinsker):

$$
C=\max _{p(u, x \mid s)}(I(U ; Y)-I(U ; S))
$$

In the example: $\mathrm{U}=\mathrm{Y}$

Analog version

$\left.C=\max _{\mathbf{p}(\mathbf{u}, \mathbf{x} \mid \mathrm{s})}(\mathrm{I} ; \mathrm{Y})-I(\mathrm{U} ; \mathrm{S})\right)$
Adopt $\mathrm{U}=\mathrm{X}+\alpha \mathrm{S}, \quad$ maximize over α
Result:
$\mathrm{C}=1 / 2 \log (1+\mathrm{P} / \mathrm{N}), \quad$ independently of Q
Obtained with $\alpha=\mathrm{P} /(\mathrm{P}+\mathrm{N})$

Geometrical explanation:

$\mathrm{U}=\mathrm{X}+\boldsymbol{\alpha} \mathrm{S}$

Approximate methods

QIM (QUANTIZATION INDEX MODULATION)

$\mathrm{f}_{\Delta}(\mathrm{y})=\bmod (\mathrm{y}+\Delta / 2, \Delta)-\Delta / 2$
Encoding: $\quad \mathrm{X}=\mathrm{f}_{\Delta}(\mathrm{U}-\mathrm{S})=\mathrm{U}-\mathrm{S}-\mathrm{k} \Delta, \quad \mathrm{k}$ integer
Decoding: $\quad \hat{W}=f_{\Delta}(Y)=f_{\Delta}(\mathrm{U}-\mathrm{S}-\mathrm{k} \Delta+\mathrm{S}+\mathrm{Z})=\mathrm{f}_{\Delta}(\mathrm{U}+\mathrm{Z})$

Watermark example

Images for watermark and host signal

Images for received watermark and received signal

Variations

- PARTITIONED LINEAR BLOCK CODES (HEEGARD, 1983)
- COSET CODES (FORNEY, RAMCHANDRAN)
- APPLICATIONS WITH BCH CODES, REED-SOLOMON CODES
- APPLICATIONS WITH LATTICES
- APPLICATIONS WITH LDPG, LDGM

Distributed source coding

Simple example

- X and Y vectors of size 3
- Hamming distance ≤ 1
- Case 1: Y known by all (i.e., encoder and decoder)

$$
R=H(X \mid Y)=2 \text { bits (just send } X+Y \text {) }
$$

- Case 2: Y known only by decoder - use coset codes Here too $\mathrm{R}=\mathbf{2}$ bits Send index of coset of X (use a repetition code)
Decoding: Using coset of X and Y , recover X exactly

Repetition code - standard array

Code (coset 0)
Coset 1
Coset 2
Coset 3

000
001
010
100

111
110
101
011

Can get X from Y and coset number

Another simple example:

Let X and Y be unif. distributed length 7 binary sequences Hamming distance $(\mathbf{X}, Y) \leq 1$
$\mathrm{H}(\mathrm{X})=\mathrm{H}(\mathrm{Y})=7$ bits
$\mathbf{H}(\mathbf{X} \mid \mathbf{Y})=\mathbf{H}(\mathbf{Y} \mid \mathbf{X})=\mathbf{3}$ bits
$H(X, Y)=10$ bits

Rate(X)

Encoding: use 3 bits (8 possible cosets)
To encode X use coset of a Hamming $(7,4)$ code

Decoding:

Based on coset number and on Y, find X

Binning operation

Figure credit: K. Ramchandran

Dual operations

- QUANTIZATION integer division resulting in quotient
- BINNING
integer division resulting in remainder

Applications

- DIGITAL WATERMARKING
- STEGANOGRAPHY
- CELLULAR TELEPHONY (DOWNLINK)
- COGNITIVE RADIO
- RADIO BROADCASTING

DIGITAL-TV OVER ANALOG-TV (CHINOOK COMM., BOSTON AREA) DIGITAL RADIO OVER FM RADIO (ALTERNATIVE TO IBOC AND DRM)

- VIDEO COMPRESSION (DISTRIBUTED SOURCE CODING)
- VIDEO SYNCHRONIZATION

Information theory is alive and well !

