The Chinese University of Hong Kong – CUHK – July 6, 2011

# DIRTY PAPER CODING AND DISTRIBUTED SOURCE CODING TWO VIEWS OF COMBINED SOURCE AND CHANNEL CODING

Max H. M. Costa FEEC - Unicamp

### Summary

- INTRODUCTION
- DIRTY PAPER CODING
  - CODING FOR MEMORIES WITH DEFECTS
  - PARTITIONED LINEAR BLOCK CODES
  - COSET CODES
- DISTRIBUTED SOURCE CODING
  - **BINNING VS QUANTIZATION**
  - COSET CODES
- DISCUSSION

### Information Theory Some seminal papers by Shannon

- Channel Coding, 1948
- Source Coding, 1948, 1958
- Cryptography, 1949

#### **Channel coding - example**



Y output

Capacity: 1 bit/transmission Best code: Use only inputs {1,3}

**Exercise moderation!!** 

#### **Channel coding**

#### Typically need larger codes, n >>1



Similar to sphere paching

#### Source coding: Get good representation of source with few bits



Similar to sphere covering

### Introduction



 $C = \max I(X;Y)$  p(x)  $R(D) = \min I(X;\hat{X})$   $p(\hat{x}|x) : E d(x, \hat{x}) < D$ 

#### Source and channel coding in communication system



#### Joint source and channel coding

#### Can be simple if source and channel are matched



#### **Rate distortion theory**



#### **Example:** Gaussian source with memory

$$D(R) = 2^{-2R} \sigma_x^2$$

or

$$R(D) = \frac{1}{2} \log_2 \left( \frac{\sigma_x^2}{D} \right)$$
  

$$\therefore \quad Max \; SNR(dB) = 10 \log_{10} \left( \frac{\sigma_x^2}{D(R)} \right) = 20R \log_{10} 2 \cong 6R$$
  
RMS distortion

### Dirty paper coding

### CODING FOR MEMORIES WITH DEFECTS



"stuck-at" defects – probability  $\alpha$ 

#### **Binning:** Randomly distribute all 2<sup>n</sup> sequences into 2<sup>nR</sup> "bins"





E (# of matching sequences in a bin) =  $2^{n(1-R)}$ .  $2^{-n\alpha}$ 

 $= 2^{n(1-\alpha-R)}$ 

#### Note:

#### If $R < 1-\alpha \rightarrow$ guaranteed to have a match

#### Thus Capacity = $1-\alpha$ bits per memory cell

(same as if receiver knew defect positions)

### Model



General solution (Gelfand and Pinsker):

```
C = \max (I(U;Y) - I(U;S))p(u,x|s)
```

In the example: U = Y

### Analog version



 $C = \max (I(U;Y) - I(U;S))$ p(u,x|s)

Adopt  $U = X + \alpha S$ , maximize over  $\alpha$ 

Result:

 $C = \frac{1}{2} \log (1 + P / N)$ , independently of Q

Obtained with  $\alpha = P / (P+N)$ 



### Approximate methods

#### QIM (QUANTIZATION INDEX MODULATION)



 $f_{\Delta}(y) = mod(y + \Delta/2, \Delta) - \Delta/2$ 

Encoding:  $X = f_{\Delta} (U-S) = U - S - k \Delta$ , k integer Decoding:  $\hat{W} = f_{\Delta} (Y) = f_{\Delta} (U-S-k \Delta + S+Z) = f_{\Delta} (U+Z)$ 

### Watermark example



#### Images for watermark and host signal



Images for received watermark and received signal

### Variations

- PARTITIONED LINEAR BLOCK CODES (HEEGARD, 1983)
- COSET CODES (FORNEY, RAMCHANDRAN)
- APPLICATIONS WITH BCH CODES, REED-SOLOMON CODES
- APPLICATIONS WITH LATTICES
- APPLICATIONS WITH LDPC, LDGM

### Distributed source coding



 $\overline{R(D)} = \min (I(X; W) - I(Y; W))$  p(w|x) : Ed(X, X) < D

### Simple example

- X and Y vectors of size 3
- Hamming distance ≤ 1
- Case 1: Y known by all (i.e., encoder and decoder)
   R = H(X|Y) = 2 bits (just send X+Y)
- Case 2: Y known only by decoder use coset codes Here too R = 2 bits Send index of coset of X (use a repetition code) Decoding: Using coset of X and Y, recover X exactly

#### **Repetition code – standard array**

| Code (coset 0) | 000 | 111 |
|----------------|-----|-----|
| Coset 1        | 001 | 110 |
| Coset 2        | 010 | 101 |
| Coset 3        | 100 | 011 |

**Can get X from Y and coset number** 

#### Another simple example:

Let X and Y be unif. distributed length 7 binary sequences Hamming distance  $(X,Y) \le 1$ 



Encoding: use 3 bits (8 possible cosets) To encode X use coset of a Hamming (7,4) code

Decoding: Based on coset number and on Y, find X

### **Binning operation**



#### Figure credit: K. Ramchandran

### Dual operations

### QUANTIZATION

### integer division resulting in quotient



integer division resulting in remainder

# Applications

- DIGITAL WATERMARKING
- STEGANOGRAPHY
- CELLULAR TELEPHONY (DOWNLINK)
- COGNITIVE RADIO
- RADIO BROADCASTING DIGITAL-TV OVER ANALOG-TV (CHINOOK COMM., BOSTON AREA) DIGITAL RADIO OVER FM RADIO (ALTERNATIVE TO IBOC AND DRM)
- VIDEO COMPRESSION (DISTRIBUTED SOURCE CODING)
- VIDEO SYNCHRONIZATION

# **Information theory is alive and well !**